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ABSTRACT

4S-Aminoproline polypeptide 2 forms unusual �-structure in trifluoroethanol that switches to the polyproline II (PPII) form in aqueous medium,
while 4R-aminoproline peptide 1 retains PPII form in both solvents. This first instance of a polyproline derivative showing a �-structure is
attributed to competitive pH-dependent (4-NH3

+/NH2) stereoelectronic effect (4R vs 4S) and the overriding importance of stereospecific intra/
intermolecular H-bonding in (2,4)-cis-4S-aminoproline in contrast to (2,4)-trans-4R-aminoproline oligomers.

The polyproline type II (PPII) helix is a prevalent conforma-
tion in both folded and unfolded proteins1 and plays an
important role in a wide variety of biological processes, such
as signal transduction, transcription, immune response, and
cell motility.2 Each strand of collagen triplex with the Pro-
Hyp-Gly tripeptide repeat unit adopts a left-handed PPII-
like conformation.3 Oligoprolines and their derivatives have

found utility as cell penetrating agents4 and as molecular
spacers in biomimetic systems for energy/electron transport.5

The PPII helix is a fully extended left-handed structure with
all amide bonds in the trans conformation, while the right-
handed PPI helix is compact, with all amide bonds in the
cis conformation.1 It is well-known that polyprolines adopt
PPII conformation in water6 and PPI conformation in
hydrophobic solvents of short chain aliphatic alcohols.6 It
has been well demonstrated that the stereoelectronic effect

† National Chemical Laboratory.
‡ Indian Institute of Science Education and Research.
(1) (a) Cowan, P. M.; Mcgavin, S. Nature 1955, 176, 501–503. (b) Traub,

W.; Shmueli, U. Nature 1963, 198, 1165–1166.
(2) (a) Rath, A.; Davidson, R.; Deber, C. M. Biopolymers (Pept. Sci.)

2005, 80, 179–185. (b) Holt, M. R.; Koffer, A. A. Trends Cell Biol. 2001,
11, 38–46. (c) Kay, B. K.; Williamson, M. P.; Sudol, M. FASEB J. 2000,
14, 231–241.

(3) (a) Brodsky, B.; Thiagarajan, G.; Madhan, B.; Kar, K. Biopolymrs
2008, 89, 345–353. (b) Shoulders, M. D.; Raines, R. T. Annu. ReV. Biochem.
2009, 78, 929–958.

(4) (a) Farrera-Sinfreu, J.; Giralt, E.; Castel, S.; Albericio, F.; Royo,
M. J. Am. Chem. Soc. 2005, 127, 9459–9468. (b) Fillon, Y. A.; Anderson,
J. P.; Chmielewski, J. J. Am. Chem. Soc. 2005, 127, 11798–11803.

(5) (a) Doose, S.; Neuweiler, H.; Barsch, H.; Saer, M. Proc. Natl. Acad.
Sci. U.S.A. 2007, 104, 17400–17405. (b) Schuler, B.; Lipman, E. A.;
Steinbach, P. J.; Klumke, M.; Eaton, W. A. Proc. Natl. Acad. Sci. U.S.A.
2005, 102, 2754–2759.

(6) (a) Knof, S.; Engel, J. Isr. J. Chem 1974, 12, 165–177. (b) Mutter,
M.; Wohr, T.; Gioria, S.; Keller, M. Biopolymers 1999, 51, 121–128. (c)
Kakinoki, S.; Hirano, Y.; Oka, M. Polym. Bull. 2005, 53, 109–115.

ORGANIC
LETTERS

2010
Vol. 12, No. 23

5390-5393

10.1021/ol1021993  2010 American Chemical Society
Published on Web 11/04/2010



of the 4-substituent plays a major role in determining the
pucker of the pyrrolidine ring of proline and hence the
conformational stability of proteins.7

In this context, we reported earlier that 4-amino
substitution on proline in collagen peptide stabilizes the
triple helix8 at both acidic and basic pHs. In collagen,
the tripeptide repeat unit [Pro-Hyp-Gly] has glycine whose
amide linkage is involved in an interchain H-bond, leading
to the triple helix structure. In contrast, polyproline
peptides lack amide NH and hence are unable to form a
triplex via interchain H-bonds, ending up as a single helix
of PPI or PPII type. Recently, 4S(OH/NH3

+) groups on
proline were shown to form intramolecular H-bonds with
the amide carbonyl, increasing the trans/cis amide ratio
and thereby promoting PPII conformation in the derived
polypeptides.9 Unlike other 4-substituents on proline
studied so far (OH, SH, CH3, F), the ionizable 4-NH2

group is a good probe to examine the pH effects on
polyproline conformation. Herein, we report the novel
behavior of 4S-aminoproline polypeptide to form a novel
�-structure in trifluoroethanol (TFE) that switches to PPII
form in aqueous medium. This property exclusive to 4S-
aminoproline polypeptide arises from a stereospecific
intramolecular H-bonding that stabilizes the PPII form,
while the unusual �-structure results from interchain
H-bonding. To our knowledge, this is perhaps the first
report of formation of �-structure in any polyproline
derivatives and its switch over to PPII form induced by
water.

Synthesis and Conformational Studies of 4-Aminopro-
line Oligomers. The oligopeptides 1-3 were synthesized
from appropriate N-Fmoc-protected monomers asssembled
in the solid phase, purified by HPLC, and characterized by
MALDI-TOF (for details, see Supporting Information). The
CD spectral analyses were carried out as a function of
temperature, pH, urea, and solvents (buffer and trifluoroet-
hanol, TFE). All three peptides (100 µM, pH 7.2) show CD
spectra (Figure 1) with a positive band between 220 and 230
nm and a negative band between 200 and 210 nm that are
the established patterns of the PPII conformation.10 The
intensity of the positive band at 225-227 nm is proportional
to the PPII helical content which is seen to decrease in the
order 4R-Amp9 1 > 4S-amp9 2 > Pro9 3.

The effect of protonation of the 4-amino group on PPII
helical content was examined by the CD spectra of peptides
1-3 (Figure 2A) recorded at different pH (4.0-10.0). The
positive ellipticity at 225 nm for 4R-Amp9 1 decreased by
10% with increasing pH up to 7.2 and did not change further
until pH 10.0. In the case of 4S-amp9 2, positive intensity
was enhanced in the pH range 4.0-10.0 in a sigmoidal

fashion. At acidic pH (4.0-5.0), the PPII helicity of 4S-
amp9 2 was low (20% of 4R-Amp9 1) but increased by 2-fold
at pH 10.0. The ellipticity of peptide Pro9 3 remained

constant with pH. This suggests a pivotal role for both
stereochemistry and the protonation status of the 4-amino
group in eliciting the PPII helicity of 4(R/S)-aminoproline
polypeptides 1 and 2.

The pH-dependent thermal stability (Tm) of PPII helices
in peptides 1-3 was measured from temperature-dependent
CD spectral data (Figure 2B and Supporting Information).
It is seen that (i) 4R-Amp9 1 has maximum Tm at all pHs;
almost invariant (ii) 4S-amp9 2 has the lowest Tm among the
peptides at pH 4.0 but increased gradually with raise in pH
to 10.0 to a value closer to the Tm of 4R-Amp9 1; and (iii)
Pro9 3 with intermediate Tm at pH 4.0 remained constant
over the pH range. The 4-NH3

+ group at pH 4.0 stabilized
the PPII helix most in the 4R-form and least in the 4S-form,
while 4-NH2 at pH 10.0 stabilized both 4R- and 4S-peptides
to a similar extent. The 4S-amp9 2 thus exhibited significant
pH-dependent PPII stability that is maximum in the unionized
amino form.
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Figure 1. CD profiles of polypeptides 1, 4R-Amp (b); 2, 4S-amp
(2); and 3, Pro9 (9), all at 100 µM (pH 7.2).

Figure 2. (A) Intensity of the positive band of CD spectra of
peptides 1-3 as a function of pH. (B) Thermal stability of PPII
helices in peptides 1-3 as a function of pH, followed at 225 nm.
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Urea is known to enhance the PPII helical content through
rigidification of the polypeptide backbone.11 The low PPII
helicity of 4S-amp9 2 was enhanced enormously (>300%)
by addition of 1 M urea (pH 7.2), while that of 4R-Amp9 1
and (Pro9) 3 increased by a mere 15-20% (Supporting
Information). The larger changes seen specifically for 4S-
amp9 2 in the presence of urea and upon increasing the pH
suggest the combined role of H-bonding and stereoelec-
tronic12 effects in dictating the PPII conformation.

Solvent plays a key role in modulating the H-bonding
effects, and hence the CD spectra of peptides 1-3 were
recorded in a flourinated solvent trifluoroethanol (TFE)
(Figure 3A). The 4R-Amp9 1 and Pro9 3 show CD spectra
typical of PPII form. Very interestingly, the CD spectra of
4S-amp9 2 in TFE are unlike the PPII pattern, showing a
negative maximum around 214 nm and a broad shoulder at
228 nm that is typical of �-structure.13

When aqueous phosphate buffer (pH 7.2) was titrated into
TFE solution of 4S-peptide 2 in tiny incremental steps of
0.1%, the 214 nm negative band slowly shifted to 205 nm,
accompanied by a growing of the broad negative shoulder
at 228 nm into a positive band at about 224 nm (Figure 3B)
typical of PPII form. The isosbestic point seen at 215 nm is
indicative of the conversion of 4S-peptide 2 from �-structure
in 100% TFE to full PPII form with 0.8% buffer in TFE.

Upon increasing the concentration of 4S-amp9 2 from 50
to 250 µM in TFE, the CD spectra exhibited a nice growth
in the negative band intensity at 210 nm, accompanied by
its shift to 216 nm and a large increase of the positive band
at 200 nm (Figure 3C). As expected for intermolecular
hydrogen bonding increasing with concentration, this strongly
points to a consolidation of �-structure in the peptide 4S-
amp9 2. In the case of 4R-Amp9 1, increasing the peptide
concentration leads to enhancement of the PPII form without
any other changes. The overall results imply that 4S-amp9 2
assumes a �-structure in TFE that is transformed to the PPII
form in aqueous medium, unlike 4R-amp9 1 which retains
the PPII form in both conditions.

The formation of �-structure in polyproline peptides under
any conditions is unprecedented in the literature since they
lack H-bond donor sites. In 4S-amp9 2, the NH2 group can
form an intramolecular H-bond with the amide carbonyl of
the same proline moiety, promoting a PPII conformation.9b

The possibility of the 4S-NH2 group engaging the amide
carbonyl of another chain of 4S-amp9 through an intermo-
lecular H-bond would lead to �-structure. Such an interchain
H-bonded structure should be facilitated at higher peptide
concentration.

A plausible molecular picture for this conversion is
depicted in Scheme 1. The intramolecular H-bonding of 4S-

NH2 with amide carbonyl possible only in 4S-amp9 2 (I)
promotes the PPII form in buffer. Urea rigidifies the
backbone11 by complementary H-bonding (II) among the cis-
disposed 4S-NH2 group and the amide carbonyl to strengthen
the PPII form. In a fluorinated solvent TFE, the intramo-
lecular H-bonding between 4S-NH2 and the amide carbonyl
switches to interchain H-bonding (III) giving rise to anti-
parallel �-structure. The trans disposition of 4R-NH2 and
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Figure 3. (A) CD spectra of peptides 1-3 in trifluoroethanol (TFE). (B) CD spectra of 4S-amp9 2 in TFE with incremental addition of
phosphate buffer (pH 7.2) from (a) 0.1% to (k) 1.0% in 0.1% steps and (l) 2.0%. (C) Increasing concentration of 2 from 50 to 250 µM.

Scheme 1. Solvent-Derived Rearrangement of H-Bonds in
4S-amp6 Leading to Conformational Switch
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the amide carbonyl group in 4R-Amp9 (IV) is not conducive
to formation of either intramolecular or strong interchain
H-bonding in the derived peptide.

Stereoelectronic vs H-Bonding Effects in 4S-amp9 2. The
stereoelectronic effect of 4R-X substituents on proline is
known to strongly favor the PPII form, over that of 4S-X
substituents by enhancing the trans-amide content.12 Al-
though the intramolecular H-bonding in 4S-NH3

+ favors the
trans-amide form,9b the unfavorable stereoelectronic effect
of 4S-NH3

+ (unlike 4R-NH3
+) strongly negates the benefit

of H-bonding (V), leading to a low PPII form for 2 at acidic
pH. At higher pH, the effect of intramolecular H-bonding
dominates a weaker stereoelectronic effect of 4S-NH2,
promoting higher PPII content in peptide 2. While the
conversion of PPII to PPI takes many hours/days due to a
slow conversion of amide from trans to cis form,14 the
switching of �-structure to PPII form is fast, within minutes,
suggesting that the amide bond of 2 is also in trans form in
the �-structure. No PPI form was seen for any of the peptides
1-3, under different conditions of pH, n-propanol and TFE.

In conclusion, it is demonstrated here that 4S-amp9 2
adapts an unusual �-structure in TFE unlike most polyproline
peptides which prefer the PPI form in hydrophobic/
fluorinated media. The �-structure arises from interchain

hydrogen bonds involving 4S-NH2 and amide carbonyl,
which are broken in water and rearranged to intramolecular
H-bonding that favors the PPII form via enriching the trans-
amide geometry. This structural conversion illustrates a fine
balance between stereoelectronic and H-bonding effects in
novel tuning of the secondary structure of 4R/S-aminoproline
polypeptides. �-Structure in polyproline peptides is hitherto
unknown, and the present results will add a new design
principle to a growing repertoire of strategies for engineering
peptide secondary structural motifs for new biomaterials and
nanoassemblies.15
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